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Binary Nonadditive Hard-Sphere Mixtures 
at High Dimension 
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At high spatial dimension, a suitably scaled classical system of interacting 
particles truncates at second virial terms. A binary mixture of nonadditive 
hard spheres with sufficiently repulsive interaction between unlike particles 
decomposes at sufficiently high density into two coexisting phases. The region 
around the critical density behaves classically. 
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regular binary mixture. 

1. I N T R O D U C T I O N  

Understanding of the qualitative properties of statistical mechanical 
systems has traditionally been achieved by examination of suitable models 
which, to be sure, distort the microscopic structures of the system of 
interest, if indeed they pretend to represent it at all. One of the most useful 
elementary models in classical fluid equilibrium is that based upon the 
mean field approximation, although some aspects, such as nonclassical 
critical exponents, are totally missed in such models unless they are 
extrapolated from model hierarchies. While the idea of long-range force is 
often built into the concept of mean field, it has been known for a long 
time that increasing the number of internal degrees of freedom which enter 
into particle-particle coupling also leads to a mean field result by reducing 
relative fluctuations, and somewhat more recently that an increase in 
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spatial dimensionality D can serve the same purpose. (~'2~ Thus, asymptoti- 
cally infinite spatial dimensionality maintains a considerable degree of 
phenomenology; we have recently shown (3~ that the Onsager approxima- 
tion for the spherocylinder nematic transition becomes exact in this limit. 
In the present note, we want to observe that, under suitable scaling, this 
type of limit gives rise to what is perhaps the most elementary model of 
phase separation, that associated with a hard-sphere mixture with non- 
additive exclusion lengths. 

2. B A C K G R O U N D  

An appropriate format for our discussion is the standard Mayer 
diagrammatic expansion (4/ of the excess free energy per unit volume (with 
respect to ideal gas) of a homogeneous mixture of simple classical fluids in 
a large volume. In this expansion, each term is of the form 

nTe, f 1-I fec;,(lq~-qj[)dq~ dqDp.,- _l~.vEn] = - . . .  1 
( i , j )  E A  

(1) 

corresponding to pr particles of type ? and density n,,, p = ~ pT. Here, 
particle i at qz in D space is of type 7i, and qo = 0. A is a connected graph 
on p vertices with no articulation points, each edge of which contributes 
a weight f~j(lqi-qjl)=exp-flO.p,Tj(lqi-qj[)-I for pair interaction 
~b~B(I q - q'[ ), assumed isotropic, and fi is reciprocal temperature. If p < D, 
and S j=  2gJ/Z/F(j/2) is the surface area of a j-dimensional unit sphere, 
D - p  + 1 dimensions in (1) can be integrated out, (s) converting (1) to 

/p, vEn]= ~P 
1 , ( i , j ) e A  

x [Net qi,=[ ~ dqf -~.. "dqPp -1-1 (2) 

Let us now restrict our attention to hard-core interactions, so that f 
becomes a step function, 

J;~(r) = - ~( R ~  e -  ~ ) (3) 

where R ~  is the cq fl separation at contact. A conservative estimate of (2) 
is readily made. If R = m a x  R~ ,  then IDet qi,~l/(P- 1)! is bounded by the 
volume of a regular polytope of side R, namely RP-1/(p - 1)!. Hence we 
can write 

VD(R)[Ip'D[n]I<<'fil (SD~j +JI)[~p'p-I[p][ (4) 
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where in 7, all distances are measured in units of R. Here, 
vo(R) = ~~ is the volume of a D-dimensional sphere of radius 
R, and in terms of the scaled densities 

p~ = n./vo(R) (5) 

the D dependence of (4) is restricted to the numerical coefficient of Z We 
want to compare (4) with the leading, p = 2 ,  terms of (1), which can be 
written as 

vD(R) I2,D[n] =p~p~ \ vo(R) ] (6) 

for each pair c~, 7- Clearly the factors of the form So ~ (2~e/D) O/2 annihilate 
(4) for p > l as D ~ 0% whereas (6) is unchanged in this scaling. It is of 
course the core volume rather than its radius which is held fixed during the 
process, so that 7 in  this limit 5 becomes a single-species hard-core system. 

3. A N A L Y S I S  OF THE M O D E L  

We conclude that if the Mayer series converges, then only the first 
term in the excess free energy per molecular volume survives as D---, oe (if 
not, we are solving a limiting model, not the limit of a model). Including 
the ideal gas contributions, we then have for the total free energy f per 
molecular volume vD(R) 

where 

1 f l f = ~  p~[ln p ~ -  1 + l n  vo(R)]  + ~ Z P~Prr.~ (7) 

We will restrict our consideration to a binary, AB, mixture of hard 
cores. It has been known for a long time that such a mixture can decom- 
pose into an A-rich and a B-rich phase when the interaction of two unlike 
particles is sufficiently repulsive. This was proved in two dimensions (6) for 
the pure Widom-Rowlinson (7) case (RaA=RBB=0) ,  exhibiting a non- 
classical critical point, and considered more generally by Ahn and 
Lebowitz. (8) It is to be noted that in order to have a well-defined non- 
vanishing relative core volume r ~  as D---, 0% we must scale the radius 
difference as 

1 A R ~ =  ( 1 - - ~  ~ , ) R  (8) 

5 For a detailed analysis of I(D) an unpublished paper of the first author is available. 
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and then indeed 

r ~  = e 4~. (9) 

For  superaddit ive two-componen t  diameters,  AA8 < �89 + Ae8), we have 

~ > ZAA rB. (10) 

The limiting primitive model,  in which ZAA = ZBB = 0, has previously been 
discussed by Rowlinson. (9) 

N o w  we want  to study phase coexistence in the binary mixture 
represented by (7) at p = 2, i.e., between states characterized by (PA, PB, T) 
and (p3,  p~, T). In general, this requires equal  pressures and chemical 
potentials:  P(PA, Ps, T) = P(P'A, P'~, T), #A(PA, PB, T) = ItA(p'A, p'~, T), 
#B(PA,Ps, T)=gs(p'A,p'B,  T), and results in the coexistence planes 
[pA(2, T), pe(2,  T) ] ,  [p~(2,  T), p~(2, T)]  parametr ized  by r and some 2. 
Fo r  hard  core interactions, there is no Tdependence ,  and so one has 
only a coexistence line, parametr ized,  e.g., by p = PA + PB. The analysis 
simplifies, while mainta in ing the phenomenology ,  in the symmetr ic  case 

~AA ='eBB = Z (11) 

for then it is readily seen that  p~ = PB, P~ = PA; hence p ' =  p, and only the 
relative concentra t ion  C=pA/p differs in the two phases, satisfying 
c + c' = 1, as well as #A(P, C) = # . (p ,  C). Hence we can choose R ~ .  = R, so 
that  % .  = 1, z < 1, and reduce (7) to 

flf = p[c in c + (1 - c) ln(1 - c) - 1 + In p + In v~(R)3 

+ �89 + 2c(1 - c) + z(1 - c) 23 (12) 

The discussion then maps  onto  that  of s tandard  symmetr ic  regular 
b inary  mixture theory (1~ with nonideal  (second virial) components .  Since 
c~f/c3P A = #A, ~f/~3p~ =/~e,  then 

lOflf  c + p ( 1 - z ) ( 1 - 2 c )  (13) 
p gC fl(]AA -- #B) = In 1 - c 

At coexistence, (13) must  vanish, w i t h f a  stable minimum.  We see as well 
that  

1 ~2/3f 1 1 q 
p Oc 2 c 1 - c  

1 0 3fif 2 c -  1 
iO 6qC 3 6'2(1--s 2 

2p(1 -- ' r )  

(14) 
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Clearly, f is always stationary at the 
4 - 2 p ( 1 - r ) > 0 ,  or 

2 
P<Po=I_ z 

1:1 mixture c =  1/2. If 

(15) 

this is a stable minimum. But if p exceeds the critical density Po, then 
c = 1/2 yields a maximum, and two new minima, at c > 1/2 and c' = 1 - c, 
appear, which are indeed the predicted consistent A-rich and B-rich phases. 
The transition is of course first order. 

To home in on the details of the transition, we can expand about the 
critical point, at which the transition is second order. If m = c - 1 / 2 ,  this 
yields to order m 4 the Landau-type Hamiltonian 

4m4 (16) 1-flf(m, P)=lfif(O, p)+ ( p 0 -  p)(1 - ~ )  m2 + ~  
P P 

The critical exponents and amplitudes which follow (11) from (16) are now 
classical, unlike the two-dimensional result. 
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